Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
1.
Hum Immunol ; 85(3): 110798, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569354

RESUMO

BACKGROUND: Antigen-specific T-cell immunity is provided by dendritic cells (DCs), which are specialized antigen-presenting cells. Furthermore, they establish a link between innate and adaptive immune responses. Currently, DC modification is a new approach for the therapy of several disorders. During solid organ transplantation, Everolimus, which is a mammalian target of rapamycin (mTOR) inhibitor, was initially utilized to suppress the immune system's functionality. Due to the intervention of Everolimus in various signaling pathways in cells and its modulatory properties on the immune system, this study aims to investigate the effect of treatment with Everolimus on the maturation and expression of immune checkpoint genes in monocyte-derived DCs. METHODS: To isolate monocytes from PBMCs, the CD14 marker was used via the MACS method. Monocytes were cultured and induced to differentiate into monocyte-derived DCs by utilizing GM-CSF and IL-4 cytokines. On the fifth day, immature DCs were treated with Everolimus and incubated for 24 h. On the sixth day, the flow cytometry technique was used to investigate the effect of Everolimus on the phenotypic characteristics of DCs. In the end, the expression of immune checkpoint genes in both the Everolimus-treated and untreated DCs groups was assessed using the real-time PCR method. RESULTS: The findings of this research demonstrated that the administration of Everolimus to DCs led to a notable rise in human leukocyte antigen (HLA)-DR expression and a decrease in CD11c expression. Furthermore, there was a significant increase in the expression of immune checkpoint molecules, namely CTLA-4, VISTA, PD-L1, and BTLA, in DCs treated with Everolimus. CONCLUSION: The findings of this study show that Everolimus can target DCs and affect their phenotype and function in order to shift them toward a partially tolerogenic state. However, additional research is required to gain a comprehensive understanding of the precise impact of Everolimus on the activation status of DCs.

2.
Adv Pharm Bull ; 14(1): 231-240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585468

RESUMO

Purpose: MicroRNAs (miRNAs) are a group of small regulatory non-coding RNAs, which are dysregulated through tumor progression. let-7 and MIR-145 are both tumor suppressor microRNAs that are downregulated in a wide array of cancers including colorectal cancer (CRC). Methods: This study was aimed to investigate the effect of simultaneous replacement of these two tumor suppressor miRNAs on proliferation, apoptosis, and migration of CRC cells. HCT-116 with lower expression levels of hsa-let-7a-3p and MIR-145-5p was selected for functional investigations. The cells were cultured and transfected with hsa-let-7a and MIR-145, separately and in combination. Cell viability and apoptosis rates were assessed by MTT assay and flow cytometry, respectively. Cell cycle status was further evaluated using flow cytometry and qRT-PCR was employed to evaluate gene expression. Results: The obtained results showed that exogenous overexpression of MIR-145 and hsa-let-7a in HCT-116 cells could cooperatively decrease CRC cell proliferation and induce sub-G1 cell cycle arrest. Moreover, hsa-let-7a and MIR-145 co-transfection significantly increased apoptosis induction compared to separate transfected cells and control through modulating the expression levels of apoptosis-related genes including Bax, Bcl-2, P53, Caspase-3, Caspase-8, and Caspase-9. Furthermore, qRT-PCR results illustrated that hsa-let-7a and MIR-145 combination more effectively downregulated MMP-9 and MMP-2 expression, as the important modulators of metastasis, compared to the controls. Conclusion: Taken together, considering that exogenous overexpression of MIR-145 and hsa-let-7a showed cooperative anti-cancer effects on CRC cells, their combination may be considered as a novel therapeutic strategy for the treatment of CRC.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38587542

RESUMO

In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.

4.
Eur J Med Res ; 29(1): 154, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448914

RESUMO

BACKGROUND: Glioblastoma multiform (GBM) is among the commonly diagnosed brain malignancies with poor prognosis. CD133 has been introduced as an oncogene in various cancers, like GBM. This study aimed to investigate the significance of CD133 in GBM development using in silico and in vitro techniques. METHOD: The TCGA-GBM database was analyzed for the correlational and comparative studies. After selecting the U87MG cell line, CD133-siRNA was transfected into U87MG cells and treated with temozolomide. The cell viability, cell cycle, migration, clonogenicity, and apoptosis of groups were investigated using MTT, flow cytometry, wound-healing, colony formation, and annexin V/PI assays. Using qRT-PCR method, the mRNA expression levels of MMP16, SOX2, RAF1, MAP2K1, MAPK3, PIK3CA, AKT3, mTOR, CDK4, and BCL2 were studied. RESULTS: CD133 silencing improves apoptosis rate, arrests the cell cycle at the sub-G1 phase, suppresses the clonogenicity of U87MG cells, and inhibits the PI3K/Akt and MAPK pathways via downregulating the RAF1, MAP2K1, MAPK3, PIK3CA, AKT3, and mTOR expression. Besides, combining CD133 silencing with temozolomide treatment considerably inhibits the migration of U87MG cells compared to temozolomide monotherapy. CONCLUSION: CD133 can regulate the PI3K/Akt and MAPK pathways and modulate the clonogenicity, apoptosis, and cell cycle of GBM. Combining CD133 silencing with temozolomide treatment considerably increases apoptosis, arrests the cell cycle at the sub-G1, and suppresses migration of U87MG cells compared to temozolomide monotherapy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Temozolomida/farmacologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Classe I de Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR
5.
Cytotherapy ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38483358

RESUMO

BACKGROUND AIMS: Acute myeloid leukemia (AML) is classified as a hematologic malignancy characterized by the proliferation of immature blood cells within the bone marrow (BM), resulting in an aberrant and unregulated cellular growth. The primary therapeutic modalities for AML include chemotherapy and hematopoietic stem cell transplantation. However, it is important to note that these treatments are accompanied by important adverse effects and mortality rates. Therefore, the need for more effective treatment options seems necessary, and dendritic cell (DC) vaccine therapy can be one of these options. In this study, we aim to investigate the effectiveness of DC vaccination therapy for the management of AML. METHODS: PubMed, Scopus, ProQuest, Web of Science, and Google Scholar databases were searched for this systematic review. The articles were evaluated based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, the articles related to the topic of this review were obtained in full text. The complete remission and partial remission, survival, correlative immune assays, and health-related metrics were used to evaluate this cellular immunotherapy effectiveness. The quality of the studies was assessed independently using the Cochrane risk-of-bias tools. The compiled data were input into a standard Excel spreadsheet. Each domain was evaluated as having either a "low risk," "high risk," or "unclear risk" of bias. RESULTS: Among the 3986 studies that were determined, a total of 11 correlated trials were selected for inclusion in this systematic review. DC vaccine therapy was effective in inducing complete and partial remission, and stabilization of the disease. Additionally, it was discovered that the treatment strengthened the immune system as seen by increased levels of CD4+ and CD8+ T cells, Th1 cytokines, WT1-specific T cells, and activated NK cells. CONCLUSION: We conducted a systematic review that supports the use of DC vaccine therapy as an effective treatment for AML. The therapy demonstrated potentials in achieving remission, enhancing the immune system function, and increasing overall survival. However, more studies are required to improve the methods of preparing and delivering the DC vaccine, and to confirm its long-term safety and effectiveness.

6.
Breast Cancer Res ; 26(1): 57, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553754

RESUMO

Breast cancer continues to pose a substantial worldwide health concern, demanding a thorough comprehension of the complex interaction between cancerous cells and the immune system. Recent studies have shown the significant function of exosomes in facilitating intercellular communication and their participation in the advancement of cancer. Tumor-derived exosomes have been identified as significant regulators in the context of breast cancer, playing a crucial role in modulating immune cell activity and contributing to the advancement of the illness. This study aims to investigate the many effects of tumor-derived exosomes on immune cells in the setting of breast cancer. Specifically, we will examine their role in influencing immune cell polarization, facilitating immunological evasion, and modifying the tumor microenvironment. Furthermore, we explore the nascent domain of exosomes produced from immune cells and their prospective involvement in the prevention of breast cancer. This paper focuses on new research that emphasizes the immunomodulatory characteristics of exosomes produced from immune cells. It also explores the possibility of these exosomes as therapeutic agents or biomarkers for the early identification and prevention of breast cancer. The exploration of the reciprocal connections between exosomes formed from tumors and immune cells, together with the rising significance of exosomes derived from immune cells, presents a potential avenue for the advancement of novel approaches in the field of breast cancer therapy and prevention.


Assuntos
Neoplasias da Mama , Exossomos , Neoplasias , Humanos , Feminino , Neoplasias da Mama/patologia , Exossomos/patologia , Estudos Prospectivos , Comunicação Celular , Microambiente Tumoral
7.
EXCLI J ; 23: 114-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487083

RESUMO

Osteoarthritis (OA) is a degenerative joint disease that occurs with aging. In its late phases, it is determined by the loss of chondrocytes and the breakdown of the extracellular matrix, resulting in pain and functional impairment. Interleukin-1 beta (IL-1ß) is increased in the injured joints and contributes to the OA pathobiology by inducing chondrocyte apoptosis and up-regulation of matrix metalloproteinases (MMPs). Here, we aimed to understand whether minocycline could protect chondrocytes against the IL-1ß-induced effects. The human C28/I2 chondrocyte cell line was treated with IL-1ß or IL-1ß plus minocycline. Cell viability/toxicity, cell cycle progression, and apoptosis were assessed with MMT assay and flow cytometry. Expression of apoptotic genes and MMPs were evaluated with qRT-PCR and western blotting. IL-1ß showed a significant cytotoxic effect on the C28/I2 chondrocyte cells. The minocycline effective concentration (EC50) significantly protected the C28/I2 cells against the IL-1ß-induced cytotoxic effect. Besides, minocycline effectively lowered IL-1ß-induced sub-G1 cell population increase, indicating the minocycline anti-apoptotic effect. When assessed by real-time PCR and western blotting, the minocycline treatment group showed an elevated level of Bcl-2 and a significant decrease in the mRNA and protein expression of the apoptotic markers Bax and Caspase-3 and Matrix metalloproteinases (MMPs) such as MMP-3 and MMP-13. In conclusion, IL-1ß promotes OA by inducing chondrocyte death and MMPs overexpression. Treatment with minocycline reduces these effects and decreases the production of apoptotic factors as well as the MMP-3 and MMP-13. Minocycline might be considered as an anti-IL-1ß therapeutic supplement in the treatment of osteoarthritis. See also the graphical abstract(Fig. 1).

8.
Heliyon ; 10(5): e27329, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495199

RESUMO

Background: Glioblastoma multiforme (GBM) remains an incurable primary brain tumor. CD8+ tumor-infiltrating lymphocytes (TILs) can target malignant cells; however, their anti-tumoral immune responses mostly do not lead to GBM rejection in GBM patients. We profiled the sub-populations of tumor-infiltrating CD8+ T-cells, i.e., naïve, cytotoxic, and exhausted cells, in primary and recurrent GBM tissues and provided a blueprint for future precision-based GBM immunotherapy. Method: We re-analyzed the raw data of single-cell RNA sequencing on the cells residing in the GBM microenvironment and leveraged tumor bulk RNA analyses to study the significance of CD8+ TILs sub-populations in primary and recurrent GBM. We investigated cell-cell interaction between exhausted CD8+ TILs and other immune cells residing in the primary and recurrent GBM microenvironments and profiled the expression changes following CD8+ TILs' transition from primary GBM to recurrent GBM. Results: Exhausted CD8+ TILs are the majority of CD8+ TILs sub-populations in primary and recurrent GBM, and cytotoxic CD8+ TILs display decreased expression of inhibitory immune checkpoint (IC) molecules in the primary and recurrent GBM. In the primary and recurrent GBM microenvironment, exhausted CD8+ TILs interact most with tumor-infiltrating dendritic cells. Conclusion: This study demonstrates the profiles of CD8+ TILs sub-populations in primary and recurrent GBM and provides a proof-of-concept for future precision-based GBM immunotherapy.

9.
Cancer Cell Int ; 24(1): 104, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468244

RESUMO

Breast cancer is significantly influenced by endoplasmic reticulum (ER) stress, impacting both its initiation and progression. When cells experience an accumulation of misfolded or unfolded proteins, they activate the unfolded protein response (UPR) to restore cellular balance. In breast cancer, the UPR is frequently triggered due to challenging conditions within tumors. The UPR has a dual impact on breast cancer. On one hand, it can contribute to tumor growth by enhancing cell survival and resistance to programmed cell death in unfavorable environments. On the other hand, prolonged and severe ER stress can trigger cell death mechanisms, limiting tumor progression. Furthermore, ER stress has been linked to the regulation of non-coding RNAs (ncRNAs) in breast cancer cells. These ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play essential roles in cancer development by influencing gene expression and cellular processes. An improved understanding of how ER stress and ncRNAs interact in breast cancer can potentially lead to new treatment approaches. Modifying specific ncRNAs involved in the ER stress response might interfere with cancer cell survival and induce cell death. Additionally, focusing on UPR-associated proteins that interact with ncRNAs could offer novel therapeutic possibilities. Therefore, this review provides a concise overview of the interconnection between ER stress and ncRNAs in breast cancer, elucidating the nuanced effects of the UPR on cell fate and emphasizing the regulatory roles of ncRNAs in breast cancer progression.

10.
J Trop Med ; 2024: 7474039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504949

RESUMO

Antigens in hydatid cyst fluid (HCF) have been discovered to bear a significant resemblance to antigens present in cancer cells. MicroRNA-1 (miR-1) is a well-known member of the tumor inhibitor miRNA family and has been shown to have pro-apoptotic and tumor-inhibitory functions. This study aimed to evaluate the ability of HCF to prevent breast cancer and to explore the underlying mechanisms that affect cancer cells. For this study, MDA-MB-231 and MCF-7 breast cancer cells were cultured and divided into two groups: one group received HCF treatment and the other group was untreated and served as the control group. The cytotoxicity and cell viability of various HCF concentrations on breast cancer cells were evaluated using the MTT assay. In addition, the expression level of miR-1 in HCF-treated and untreated breast cancer cells was analyzed using qRT-PCR. The study found that HCF treatment reduced the growth of MDA-MB-231 and MCF-7 breast cancer cells, indicating that it was cytotoxic to the cells. Specifically, the IC50 concentration of HCF after 24 hours of treatment was 7.32 µg/mL for MDA-MB-231 cells and 13.63 µg/mL for MCF-7 cells. In addition, qRT-PCR analysis revealed that the expression level of miR-1 was significantly increased in HCF-treated MDA-MB-231 (P=0.0203) and MCF-7 (P=0.0394) cell lines compared to untreated controls. Although HCF has been shown to inhibit the growth of breast cancer cells and to upregulate miR-1, a key tumor suppressor in cancer cells, the specific mechanisms responsible for this effect remain unclear. Further studies are needed to fully understand the molecular pathways underlying HCF's antitumor activity and its potential as a therapeutic agent in cancer therapy.

11.
Bioimpacts ; 14(2): 27764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505672

RESUMO

Introduction: Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. microRNAs are a group of regulatory non-coding RNAs that are involved in GC progression. miR-145 as a tumor suppressor and miR-21 as an oncomiR were shown to be dysregulated in many cancers including GC. This research aimed to enhance the expression of miR-145 while reducing the expression of miR-21 and examine their impact on the proliferation, apoptosis, and migration of GC cells. Methods: KATO III cells with high expression levels of miR-21-5p and low expression of miR-145-5p were selected. These cells were then transfected with either miR-145-5p mimics or anti-miR-21-5p, alone or in combination. Afterward, the cell survival rate was determined using the MTT assay, while apoptosis induction was investigated through V-FITC/PI and DAPI staining. Additionally, cell migration was examined using the wound healing assay, and cell cycle progression was analyzed through flow cytometry. Furthermore, gene expression levels were quantified utilizing the qRT-PCR technique. Results: The study's findings indicated that the co-replacement of miR-145-5p and anti-miR-21-5p led to a decrease in cell viability and the induction of apoptosis in GC cells. This was achieved via modulating the expression of Bax and Bcl-2, major cell survival regulators. Additionally, the combination therapy significantly increased sub-G1 cell cycle arrest and reduced cell migration by downregulating MMP-9 expression as an epithelial-mesenchymal transition marker. This study provides evidence for the therapeutic possibility of the combination of miR-145-5p and anti-miR-21-5p and also suggests that they could inhibit cell proliferation by modulating the PTEN/AKT1 signaling pathway. Conclusion: Our research revealed that utilizing miR-145-5p and anti-miR-21-5p together could be a promising therapeutic approach for treating GC.

12.
Purinergic Signal ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436880

RESUMO

The development of ionizable lipid (IL) was necessary to enable the effective formulation of small interfering RNA (siRNA) to inhibit P2X7 receptors (P2X7R), a key player in tumor proliferation, apoptosis, and metastasis. In this way, the synthesis and utility of IL for enhancing cellular uptake of lipid nanoparticles (LNP) improve the proper delivery of siRNA-LNPs for knockdown overexpression of P2X7R. Therefore, to evaluate the impact of P2X7 knockdown on breast cancer (BC) migration and apoptosis, a branched and synthesized ionizable lipid (SIL) was performed for efficient transfection of LNP with siRNA for targeting P2X7 receptors (siP2X7) in mouse 4T-1 cells. Following synthesis and structural analysis of SIL, excellent characterization of the LNP was achieved (Z-average 126.8 nm, zeta-potential - 12.33, PDI 0.16, and encapsulation efficiency 85.35%). Afterward, the stability of the LNP was evaluated through an analysis of the leftover composition, and toxic concentration values for SIL and siP2X7 were determined. Furthermore, siP2X7-LNP cellular uptake in the formulation was assessed via confocal microscopy. Following determining the optimal dose (45 pmol), wound healing analysis was assessed using scratch assay microscopy, and apoptosis was evaluated using flow cytometry. The use of the innovative branched SIL in the formulation of siP2X7-LNP resulted in significant inhibition of migration and induction of apoptosis in 4T-1 cells due to improved cellular uptake. Subsequently, the innovative SIL represents a critical role in efficiently delivering siRNA against murine triple-negative breast cancer cells (TNBC) using LNP formulation, resulting in significant efficacy.

13.
Clin Transl Oncol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512448

RESUMO

Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.

14.
Iran J Basic Med Sci ; 27(4): 475-484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419894

RESUMO

Objectives: Colorectal cancer (CRC) remains a major health concern worldwide due to its high incidence, mortality rate, and resistance to conventional treatments. The discovery of new targets for cancer therapy is essential to improve the survival of CRC patients. Here, this study aims to present a finding that identifies the STAT6 oncogene as a potent therapeutic target for CRC. Materials and Methods: HT-29 CRC cells were transfected with STAT6 siRNA and treated with 5-fluorouracil (5-FU) alone and combined. Then, to evaluate cellular proliferation and apoptosis percentage, MTT assay and annexin V/PI staining were carried out, respectively. Moreover, the migration ability of HT-29 cells was followed using a wound-healing assay, and a colony formation assay was performed to explore cell stemness features. Gene expression was quantified via qRT-PCR. Afterward, functional enrichment analysis was used to learn in-depth about the STAT6 co-expressed genes and the pathways to which they belong. Results: Our study shows that silencing STAT6 with small interfering RNA (siRNA) enhances the chemosensitivity of CRC cells to 5-FU, a commonly used chemotherapy drug, by inducing apoptosis, reducing proliferation, and inhibiting metastasis. These results suggest that combining 5-FU with STAT6-siRNA could provide a promising strategy for CRC treatment. Conclusion: Our study sheds light on the potential of STAT6 as a druggable target for CRC cancers, the findings offer hope for more effective treatments for CRC patients, especially those with advanced stages that are resistant to conventional therapies.

15.
Sci Rep ; 14(1): 3114, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326326

RESUMO

The misregulation of long non-coding RNAs (lncRNAs) is related to the progressive evolution of various human cancers, such as Breast cancer (BC). The role of lncRNA B4GALT1-AS1 has been investigated in some human cancers. Therefore, studying B4GALT1-AS1 expression was aimed for the first time in the tumor and marginal tissues of BC in this study. The cancer genome atlas (TCGA) database was utilized to evaluate the relative expression of B4GALT1-AS1 in BC and other cancers. RNA was extracted from twenty-eight paired BC and marginal tissues, and cDNA was synthesized. The quantitative expression level of B4GALT1-AS1 was evaluated using real-time PCR. The bioinformatics analyses were performed to identify co-expression genes and related pathways. B4GALT1-AS1 was significantly downregulated in BC specimens compared to tumor marginal samples. The TCGA data analysis confirmed the downregulation of B4GALT1-AS1 in BC. The bioinformatics analysis discovered the correlation between 700 genes and B4GALT1-AS1 and identified GNAI1 as the high degree gene which was positively correlated with B4GALT1-AS1 expression. It seems B4GALT1-AS1 provides its function, at least partly, in association with one of the hippo pathway components, YAP, in other cancers. This protein has the opposite role in BC and its loss of function can result in poor survival in BC. Further research is needed to investigate the interaction between B4GALT1-AS1 and YAP in various subtypes of BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Baixo/genética , MicroRNAs/genética , Via de Sinalização Hippo , Neoplasias/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral
16.
Immunogenetics ; 76(2): 75-91, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358555

RESUMO

The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.


Assuntos
Neoplasias , Proteínas Repressoras , Humanos , Animais , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos , Neoplasias/terapia , Neoplasias/metabolismo , Células Dendríticas , Carcinogênese , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microambiente Tumoral
17.
Heliyon ; 10(4): e26193, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404880

RESUMO

Despite the widespread use of the Bacillus Calmette-Guérin (BCG) vaccine, Mycobacterium tuberculosis (MTB) continues to be a global burden. Vaccination has been proposed to prevent and treat tuberculosis (TB) infection, and several of them are in different phases of clinical trials. Though vaccine production is in progress but requires more attention. There are several TB vaccines in the trial phase, most of which are based on a combination of proteins/adjuvants or recombinant viral vectors used for selected MTB antigens. In this review, we attempted to discuss different types of TB vaccines based on the vaccine composition, the immune responses generated, and their clinical trial phases. Furthermore, we have briefly overviewed the effective delivery systems used for the TB vaccine and their effectiveness in different vaccines.

18.
Curr Mol Med ; 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38288828

RESUMO

Triple-negative breast cancer (TNBC) presents considerable obstacles because of its highly aggressive characteristics and limited availability of specific therapeutic interventions. The utilization of monoclonal antibody (mAb)-based immunotherapy is a viable approach to tackle these difficulties. This review aims to examine the present state of mAb-based immunotherapy in TNBC, focusing on the underlying mechanisms of action, clinical applications, and existing challenges. The effectiveness of mAbs in reducing tumor development, regulating immune responses, and changing the tumor microenvironment has been demonstrated in many clinical investigations. The challenges encompass several aspects such as the discovery of biomarkers, understanding resistance mechanisms, managing toxicity, considering costs, and ensuring accessibility. The future is poised to bring forth significant advancements in the field of biomedicine, particularly in the areas of new mAbs, personalized medicine, and precision immunotherapy. In conclusion, mAb-based immunotherapy has promise in revolutionizing the treatment of TNBC, hence providing a possible avenue for enhanced patient outcomes and quality of life.

19.
Immunol Lett ; 266: 106837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266686

RESUMO

Recurrent pregnancy loss (RPL) is a multifactorial disorder, associated with immunologic abnormalities. During pregnancy, the maternal immune system uses different tolerance mechanisms to deal with a semi-allogenic fetus. The expression of immune checkpoints and their related miRNAs in immune cells can ensure pregnancy at the feto-maternal interface by modulating immune responses. This study aims to evaluate the expression of the immune checkpoint molecules PD-1 and Tim-3 on circulating T cells by flow cytometry, that of mir-138 and mir-155 in PBMCs by Real-time PCR, and the concentrations of TGF-ß and IP-10 in the sera of women suffering from RPL as well as of gestational age-matched healthy pregnant women by ELISA. The percentage of PD-1 or Tim-3 expressing CD8+ T cells was significantly lower in RPL patients compared to the controls, while there was no significant difference in Tim-3 expression of CD4+ T cells between the two groups. The mRNA of both the PD-1 and Tim-3 genes were downregulated in PBMCs of RPL patients compared to controls, however, the difference was not statistically significant for Tim-3. The concentration of TGF-ß was significantly lower and that of IP-10 was significantly higher in the sera of RPL patients than in those of the controls. The relative expression of mir-138 and miR-155 were significantly lower, in PBMCs of RPL patients than in those of healthy pregnant women. These data confirm that by affecting cytokine production, immune checkpoints, and microRNAs play a role in establishing the appropriate local immune environment for successful pregnancy. The wider analysis of immune checkpoints may also yield new biomarkers for the diagnosis and prevention of RPL.


Assuntos
Aborto Habitual , MicroRNAs , Humanos , Gravidez , Feminino , MicroRNAs/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CXCL10 , Aborto Habitual/diagnóstico , Aborto Habitual/genética , Fator de Crescimento Transformador beta
20.
Cancer Cell Int ; 24(1): 16, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185635

RESUMO

In recent decades, colorectal cancer (CRC) has turned into one of the most widespread malignancies, and the incidence of this malignancy is expected to increase. Despite considerable improvements in therapeutic approaches, the prognosis, and the management of CRC face many problems. Likely, the main limitation in the successful treatment of CRC is the lack of appropriate clinical therapeutic targets. As an effective target, the signal transducer and activator of transcription 3 (STAT3) are regulated by a wide range of genes and involved in cellular processes, including cell growth, migration, invasion, immunosuppression, and angiogenesis. Aberrant regulation of STAT3 signaling leads to cellular dysfunction, diseases, and malignancies, including CRC. Consequently, targeting this signaling pathway is considered one of the therapeutic strategies used in CRC treatment. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA molecules with partial or no protein-coding activity that participate in gene regulation at epigenetic, transcriptional, and post-transcriptional levels and regulate multiple signaling pathways, including STAT3 signaling (especially JAK/STAT). Therefore, these regulatory molecules are suggested to be very promising targets to present new insights into overcoming the limitations of conventional therapeutic strategies. Therefore, the current review study aimed to summarize the therapeutic and diagnostic significance of miRNAs and lncRNAs and their therapeutic and diagnostic significance related to the expression and activity of STAT3 in CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...